使用tensorboard可视化loss和acc的实例

yipeiwu_com6年前Python基础

1.用try...except...避免因版本不同出现导入错误问题

try:
 image_summary = tf.image_summary
 scalar_summary = tf.scalar_summary
 histogram_summary = tf.histogram_summary
 merge_summary = tf.merge_summary
 SummaryWriter = tf.train.SummaryWriter
except:
 image_summary = tf.summary.image
 scalar_summary = tf.summary.scalar
 histogram_summary = tf.summary.histogram
 merge_summary = tf.summary.merge
 SummaryWriter = tf.summary.FileWriter

2.将代码写入作用域(作用域不影响代码的运行)

with tf.name_scope('loss'):
 loss = -tf.reduce_sum(y * tf.log(y_conv))
 loss_summary = scalar_summary('loss', loss)
 
with tf.name_scope('accuracy'):
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
 acc_summary = scalar_summary('accuracy', accuracy)

3.将要保存的变量存在一起

另外可使用 tf.merge_all_summaries() 或者 tf.summary.merge_all()

merged = merge_summary([loss_summary, acc_summary])

4.定义保存路径(在sess中完成)

writer = SummaryWriter('save-cnn20/logs', sess.graph)

5.训练模型的同时训练变量集合merged(在sess中完成,counter为计数,每训练一次增加1)

summary, _ = sess.run([merged, train_step], feed_dict={x:x_batch, y:y_batch})
counter += 1
writer.add_summary(summary, counter)

6.训练完成后在 save/logs 文件夹里面会有一个events.out.开头的文件,以下通过终端操作。

cd save
tensorboard --logdir=logs

终端会出现一个网址,复制到浏览器中打开就能看见tensorboard储存的图像了。(若打开后无数据或图像,检查 --logdir后面的文件夹名字是否给错了。)

以上这篇使用tensorboard可视化loss和acc的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pytorch反向求导更新网络参数的方法

方法一:手动计算变量的梯度,然后更新梯度 import torch from torch.autograd import Variable # 定义参数 w1 = Variable(...

详解js文件通过python访问数据库方法

详解js文件通过python访问数据库方法

我来教你 js文件怎么通过python访问数据库,希望能够为你带来帮助。 1、如果是要提交表单内容给 服务器的 python 处理,那么只需要在表单 <form> 里面的 a...

opencv3/C++图像像素操作详解

opencv3/C++图像像素操作详解

RGB图像转灰度图 RGB图像转换为灰度图时通常使用: 进行转换,以下尝试通过其他对图像像素操作的方式将RGB图像转换为灰度图像。 #include<opencv2/open...

python实现微信自动回复机器人功能

python实现微信自动回复机器人功能

一 简单介绍 wxpy基于itchat,使用了 Web 微信的通讯协议,,通过大量接口优化提升了模块的易用性,并进行丰富的功能扩展。实现了微信登录、收发消息、搜索好友、数据统计等功能。...

python登录QQ邮箱发信的实现代码

复制代码 代码如下:# -*- coding: cp936 -*-from email.Header import Headerfrom email.MIMEText import MI...